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A naive question

“| subscribed to a DSL line in Belgium. | want to improve latency
towards google.be. Should | switch to fiber?”
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A naive question

“| subscribed to a DSL line in Belgium. | want to improve latency
towards google.be. Should | switch to fiber?”
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A naive question

“| subscribed to a DSL line in Belgium. | want to improve latency

towards google.be. Should | switch to fiber?”
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A naive question

“| subscribed to a DSL line in Belgium. | want to improve latency
towards google.be. Should | switch to fiber or use IPv4?”
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Version 2
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A naive question

“| subscribed to a DSL line in Belgium. | want to improve latency
towards google.be. Should | switch to fiber or use IPv4?”
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Measuring latency differences

RIPE Atlas is a worldwide
measurement platform.

RIPE probes are operated by
individuals and can perform
network tests on demand.

41 probes are connected to
AS5432.

bl  RIPE Atlas

Global RIPE Atlas Network Coverage

This map shows the locations of all RIPE Atlas probes,
including those that are connected, disconnected and 5432
abandoned (meaning they have not been connected for a

long period of time).
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RIPE Ping test

Let’s request pings towards
google.be using IPv6 and IPv4.
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RIPE Ping test

Let’s request pings towards
google.be using IPv6 and IPv4.

Fiber improves the latency.
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RIPE Ping test

e Let's request pings towards
google.be using IPv6 and IPv4.

e Fiber improves the latency.

e Changing the address family does
too!

Probe ¢ ASN (IPv4) ¢ ASN (IPv6) ¢
62020 5432 5432
11639 5432 5432
1005964 5432 5432
25348 5432 5432
1006234 5432 5432
15019 5432 5432
17394 5432 5432
50750 5432 5432
24320 5432 5432
24519 5432 5432
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A naive question

“| subscribed to a DSL line in Belgium. | want to improve latency
towards google.be. Should | switch to fiber or use IPv4?”
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difference come from?
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A naive question

“| subscribed to a DSL line in Belgium. | want to improve latency
towards google.be. Should | switch to fiber or use IPv4?”

Let's run a traceroute from the probes and —— IPV4
look what happens when it exits the ISP.
—— |PV6
google.be

| [ Where does the address family }

difference come from?




RIPE Traceroute test

Running a traceroute reveals a
difference when exiting the ISP and
entering the Google AS.
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RIPE Traceroute test

Running a traceroute reveals a
difference when exiting the ISP and
entering the Google AS.

Their peering is the major cause of
address family latency differences.
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Taking a step back — Let’'s ask smart questions now

e |[s there an address family that has globally a lower latency?

e How are these differences spread?

o Are they common to the source?

o Do they depend on the destination?

e Are these differences stable over time?

16



RIPE Atlas

e RIPE has about 12,000
probes and 780 anchors
spread in 3600 ASes.

e Probes regularly perform
automated network tests
towards anchors.

e The tests results are
collected and published
through BigQuery
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RIPE Atlas

e RIPE has about 12,000
probes and 780 anchors
spread in 3600 ASes.
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RIPE Atlas

e RIPE has about 12,000
probes and 780 anchors
spread in 3600 ASes.

e Probes regularly perform
automated network tests
towards anchors.

e The tests results are
collected and published
through BigQuery
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RIPE Atlas
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IPv4 and IPv6 end-to-end latency

e Probes performed 156 millions of HTTP v4/v6 tests between the 1st and 8th
of June 2023.
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IPv4 and IPv6 end-to-end latency

e Probes performed 156 millions of HTTP v4/v6 tests between the 1st and 8th
of June 2023.

e No address family has a global advantage in terms of latency.
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IPv4 and IPv6 end-to-end latency

e Probes performed 156 millions of HTTP v4/v6 tests between the 1st and 8th
of June 2023.

e No address family has a global advantage in terms of latency.
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IPv4 and IPv6 end-to-end latency

e There are 400 000 probe-anchor pairs with at
least 300 HTTP tests.

e For each pair, a statistical test determine whether
a difference larger than the standard deviation

exists.
e Results are spread rather homogeneously.

Density

t-test
<~ ‘“difference > o”
>0.98 ?

IPv4
—— IPVv6

Test completion time

IPv4 is best IPv6 is best None strongly better

113092 (28.4%) 129070 (32.4%) 156212 (39.2%)
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IPv4 and IPv6 end-to-end latency

t-test

e There are 400 000 probe-anchor pairs with at <. “ifference > 0"
least 300 HTTP tests. z \ . 0987

3 IPv4

e For each pair, a statistical test determine whether - |Pz6

a difference larger than the standard deviation
exists.

e Results are spread rather homogeneously.

Test completion time

IPv4 is best IPv6 is best None strongly better

113092 (28.4%) 129070 (32.4%) 156212 (39.2%)

Are these results stable over time ?

Are these results consistent per probe ? 25




IPv4 and IPv6 end-to-end latency

We used a change-point detection algorithm to split probe-anchor timeries.

The statistical test is repeated on each segment. Pva
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Pairs total

4 569 (1.15 %)

32 459 (8.15 %)

27 312 (6.86 %)

334 034 (83.85 %)
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IPv4 and IPv6 end-to-end latency

We used a change-point detection algorithm to split probe-anchor timeries.

The statistical test is repeated on each segment.
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IPv4 and IPv6 end-to-end latency

e By grouping results by probe, we determine the fastest address family for a
majority of anchors and the percentage of this majority.

Best family for a
majority of
destinations

1.00 *
i, 0.75 - [Pv4 is better (v4)
8 0.50 - IPv6 is better (v6)
0.25 - None strongly better (N)
0.00 | | |

0.00 0.25 0.50 0.75 1.00
Ratio of anchors reached
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IPv4 and IPv6 end-to-end latency

e By grouping results by probe, we determine the fastest address family for a
majority of anchors and the percentage of this majority.

e Using only the globally-best address family does not enable reaching a
significant part of destinations with a low latency.

1.00

i, 0.75 - [Pv4 is better (v4)

8 0.50 - IPv6 is better (v6)
0.25 - None strongly better (N)
0.00 | | |

0.00 0.25 0.50 0.75 1.00

Ratio of anchors reached 29



Interlude

e End-to-end latency differences between IPv4 and IPv6 are real.

o Sometimes they play in favor of IPv6, sometimes they don't.

e With the rise of latency-sensitive applications, ISPs and content providers
need to make IPv6 as good as IPv4 for the transition to happen.

o Test for IPv6 latency

o Improve your peerings and infrastructure

30



Latency-sensitive applications should
carefully select the address family.

A selection technique optimising for
latency should:

o give no a priori preference.

o distinguish destinations.

o be able to make its choices evolve over
time

Opportunities for latency-sensitive applications

Adaptive Address Family Selection for
Latency-Sensitive Applications on Dual-stack Hosts

Maxime Piraux
maxime.piraux@uclouvain.be
UCLouvain
Belgium

ABSTRACT

Latency is becoming a key factor of performance for Inter-
net applications and has triggered a number of changes in
its protocols. Our work revisits the impact on latency of
address family selection in dual-stack hosts. Through RIPE
Atlas measurements, we analyse the address families latency
difference and establish two requirements based on our find-
ings for a latency-focused selection mechanism. First, the
address family should be chosen per destination. Second, the
choice should be able to evolve over time dynamically.

Olivier Bonaventure
olivier.bonaventure@uclouvain.be
UCLouvain
Belgium

Given that the adoption of IPv6 on devices, operating sys-
tems and networks is heterogeneous [30, 31, 11], very few
service providers completely transitioned to IPv6 but rather
became dual-stack. As a result, when an application estab-
lishes a transport connection, it needs to select one address
family. This problem has seen a number of solutions over
the years [38, 40, 35]. All of them made the hypothesis that
IPv6 should be favoured to foster its transition and include
a fallback mechanism in case of a broken IPv6 path. At the
early stages of the IPv6 deployment, several transition solu-

https://arxiv.org/pdf/2309.05369.pdf
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How to steer hosts?

Differences mostly exist past the
user network.
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o How can the [
DNS help?

Differences mostly exist past the
user network.

|

— |Pv4
— |PV6

A
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How to steer hosts?

The DNS resolver is at the boundary between:

(@)

(@)

User network and WAN.

Domain names and IP addresses.
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/
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AAAA service.com?

[:::::] A service.com?
[ 1

T

\__© \E\ DN

Hosts with Happy Eyeballs version 2 prefer IPv6.

— |Pv4
— |PV6

/

service.com
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|HTTPS service.com? |

— |PV4
— |PV6

/

service.com

) ipv6hint=IPv6
H' 1 HTTPS 4 pvahint=1Pv4
\O\D

Hosts with Happy Eyeballs version 3 (draft-pauly-v6ops-happy-eyeballs-v3)

can use HTTPS SVCB RRs.

35
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|HTTPS service.com? |

) SvcPriority X
Hﬁ 1 ~ [HTTPS jpvehint=1Pv6
o \5\ DR ) SvcPriority Y

.
———= HTTPS ;, ahint=1Pv4

— |PV4
— |PV6

/

service.com

e Hosts with Happy Eyeballs version 3 (draft-pauly-v6ops-happy-eyeballs-v3)

can use HTTPS SVCB RRs.

e The resolver can influence the order established by HE by changing the

priority of HTTPS RRs.
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Design

|

towards a destination?

How to select the best address family

—

AAAA service.com?

[ 1]
[ ]

A service.com?

offff:

IPV4 |

[(

o\

Or

|AAAA

The resolver must balance choices exploration and exploitation.

(@)

IPV6 |

?2?7?

IPvé6

Reinforcement learning problem
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/

service.com
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Design

—— IPv4
P(ve) MN—~J7 ™ Ny ° IPv6 — |PV6

How to select the best address family
towards a destination?

AAAA service.com?

:| A service.com?
[ 1

\ IIIIIIIIIIIIIII
WV ~ |AAAA  i:iffffiiPVA |

EXP3 for service.com

p(VG)/\/‘\/\_/l_,

service.com

S~ o
D N . [AAAA IPV6

e The resolver must balance choices exploration and exploitation.

o Reinforcement learning problem.

o EXP3 [1] is an algorithm solving this problem with strong garanties.

[1] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. 2002. The Nonstochastic Multiarmed Bandit Problem.



Design

towards a destination?

AAAA service.com?

How to select the best address family
P(va) MN—~U7 " M || 1IPve
P(VG)/\/'\-/\_/!_ B

— |PV4
— |PV6

:| A service.com?
[ 1

EXP3 for se rvice‘.\com

/

-

service.com

S~ o
D N . [AAAA IPV6

e The resolver must balance choices exploration and exploitation.

o Reinforcement learning problem.

o EXP3 [1] is an algorithm solving this problem with strong guarantees.

e EXP3 can learn from transport metrics obtained from the network.

[1] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. 2002. The Nonstochastic Multiarmed Bandit Problem.




Validating our design

IPv4 is better (28.39 / \’rongly better (39.21 % sim.)

— EXP3 e In the paper, we validate our design all family for probe

1.00 using the RIPE Atlas dataset.

0.75 1 e OQOur solution can converge towards the
é 0.50 - lowest-latency address family for each

destination .
0.25 1
0.00 | 1 | T T
0.00 0‘25 0.50 \DTIJ 1. UU A% JT FRVAV J SV AV [“AVAv) [“EeAY) V.U\J/ 0.25 0.50 0.75 1.00
Ratio of lowest Absolute expected gain Expected gain per request
completion time choices per request (ms) relative to median RCT
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Experiments

e Proximus (DSL)
— e Voo (Cable) Tranco list of top 40 Pva
The host runs our modified e UCLouvain dual-stack domain names v
DNS resolver. e Tadaam (4G FWA) — |PV6

@] .

DN

—

L

service.com

e Chrome loads popular web sites.
e The prototype impact on TCP and QUIC handshake times is measured.

e Each web site is loaded a total of 40 times in a random order, and using IPv4,
IPv6, and our prototype.

e The prototype passively learns during the experience.



Experiments
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Experiments
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Experiments
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Experiments [

Positive impact: lower mean latency and reduced tail latency!
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Experiments

e Impact on the mean of mean handshake times towards our destinations.

Network Prototype Best address Worst address
family family
Campus 12.90 ms 11.60 ms 13.83 ms
DSL 18.62 ms 18.10 ms 23.96 ms
Cable 21.60 ms 19.96 ms 23.60 ms

4G FWA 67.35 ms 65.26 ms 70.14 ms



More to read in the paper

e \We explore how the address family
selection can be formulated as a
multi-armed bandit problem.

e We validate our design using the
RIPE data.

e \We implement and evaluate a DNS
resolver prototype with Chrome
loading popular web services on real
networks.

Adaptive Address Family Selection for
Latency-Sensitive Applications on Dual-stack Hosts

Maxime Piraux
maxime.piraux@uclouvain.be
UCLouvain
Belgium

ABSTRACT

Latency is becoming a key factor of performance for Inter-
net applications and has triggered a number of changes in
its protocols. Our work revisits the impact on latency of
address family selection in dual-stack hosts. Through RIPE
Atlas measurements, we analyse the address families latency
difference and establish two requirements based on our find-
ings for a latency-focused selection mechanism. First, the
address family should be chosen per destination. Second, the
choice should be able to evolve over time dynamically.

Olivier Bonaventure
olivier.bonaventure@uclouvain.be
UCLouvain
Belgium

Given that the adoption of IPv6 on devices, operating sys-
tems and networks is heterogeneous [30, 31, 11], very few
service providers completely transitioned to IPv6 but rather
became dual-stack. As a result, when an application estab-
lishes a transport connection, it needs to select one address
family. This problem has seen a number of solutions over
the years [38, 40, 35]. All of them made the hypothesis that
IPv6 should be favoured to foster its transition and include
a fallback mechanism in case of a broken IPv6 path. At the
early stages of the IPv6 deployment, several transition solu-

https://arxiv.org/pdf/2309.05369.pdf
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Perspective for future works

e End-to-end latency differences between address families are real.

e \When the underlying cause is quality of peering, differences per destinations
are also expected from one IPv6 provider to another.

e Address family selection in dual-stack networks is a subset of the source
address selection in IPv6 multihomed networks.

e Other metrics than latency could be optimised using our approach.

e In both cases, the DNS could help hosts select the most appropriate source
address towards a destination.

49



Next steps

e \We are seeking collaborations regarding IPv6 multihoming.

e Full article on arxiv.org, under revision in a journal.

o Datasets and code will be made public.

e Reach out to me at maxime.piraux@uclouvain.be.

e Let's discuss extending the use of DNS and improving latency in
IPv6 multihoming scenarii.

50
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IPv6 multihoming with an improved DNS resolver
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—_—| Server /
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IPv6 multihoming with an improved DNS resolver
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IPv6 multihoming with an improved DNS resolver

@

AAAA service.com?
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IPv6 multihoming with an improved DNS resolver

— @

AAAA service.com?

A IPv4
e \\ < AAAA IPVE@A
AAAA IPv6@
SPREF IPv6@F prefix

: A service.com?
— N

The resolver hints which source address
is best using a new DNS record.
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| Server /
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Perspective for future works

e Address family selection in dual-stack networks is a subset of the source
address selection in IPv6 multihomed networks.

e Other metrics than latency could be optimised using our approach.

e In both cases, extending the DNS could help hosts select the most
appropriate source address towards a destination.
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AAAA service.com?

[:::::] A service.com?
[ 1

T

\__© \5\ RNEERN

e Hosts with Happy Eyeballs prefer IPv6.

e Extending the DNS could enable the resolver to indicate which address family

is preferred.

— |PV4
— |PV6

/

service.com
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A naive question

“| subscribed to a DSL line in Belgium. | want to improve latency
towards google.be. Should | switch to fiber or use IPv4?”

—— IPv4
—— IPv6

/

google.be

[ Let's answer it in a smart way! }
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A naive question

“| subscribed to a DSL line in Belgium. | want to improve latency
towards google.be. Should | switch to fiber or use IPv4?”

—— IPv4
—— IPv6

/

google.be

[ What does impact latency? }
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