IPv6 in Kubernetes & OpenShift

IPv6 Council #13 April 1st, 2022

1

Pieter Lewyllie - Solution Architect, Red Hat - IPv6 Council Be Co-Chair

ked Hat

Disclaimer

These slides represent my personal views. Not all of the following slides have been vetted by Red Hat.

3

Product development model

We participate in and create community-powered upstream projects.

We integrate upstream projects, fostering open community platforms.

We commercialize these platforms together with a rich ecosystem of services and certifications.

Kubernetes, also known as K8s, is an open-source system for automating deployment, scaling, and management of containerized applications.

https://kubernetes.io

91% ARE USING KUBERNETES

Container adoption is accelerating

Businesses are using Kubernetes to

- Drive automation
- Improve efficiencies
- Increase application agility

IPv6 & containers...

25 Feb 2019 11:55am, by Mary Branscombe

https://blog.apnic.net/2018/03/22/ipv6-and-containers-a-horror-story/ https://thenewstack.io/kubernetes-warms-up-to-ipv6/ https://docs.openshift.com/container-platform/4.2/release_notes/ocp-4-2-release-notes.html https://kubernetes.io/docs/concepts/services-networking/dual-stack/

Why IPv6 in Kubernetes?

- ✔ Cleaner design
- ✔ Easier troubleshooting
- ✔ Not easy to find remaining (private!) IPv4 space in organization

🖌 Multi cluster

✔ VNFs: Mobile packet core, 5G...

Nodes, Pods, Containers

- Node:
 - A server
- Cluster:
 - Collection of nodes
- Pod:
 - Collection of containers;
 - Nodes can run multiple Pods

Services overview

- "Pods can come and go, services stay"
- Define a single IP/Port combination that provides access to a pool of pods
- By default a service connects the client to a Pod in a round- robin fashion
- This solves the dilemma of having to keep up with every transient IP address

Some IPv4 examples... Let's start with Submariner

Multicluster networking with Submariner.io

Hijacking public ranges

Stories from the field

Evolution to IPv6 in Kubernetes

IP Addresses in Kubernetes

- Originally Kubernetes was IPv4-only
- Moving to dual stack (simultaneous IPv4+IPv6) is hard; lots of places that support only 1 IP need to be updated...
 - o pod.status.podIP
 - service.status.clusterIP
 - kubelet --node-ip
 - node.status.addresses ... already plural but some existing clients
 expect to only see IPv4 addresses there!
- "Single-stack IPv6" introduced as a transitional mechanism

Single-Stack IPv6

- Instead of every IP address in the cluster being IPv4, every address is IPv6 instead.
- Alpha in kubernetes 1.9, beta in 1.18. Turns out to not actually be very useful...
 - *Every* address has to be IPv6
 - Pods only have IPv6 addresses, and hence only IPv6 routing to the outside world.
 - It turns out lots of people want 99% IPv6 and 1% IPv4, but kubernetes single-stack IPv6 can't do that.

Dual Stack

- Alpha since kubernetes 1.11
- Every pod gets both an IPv4 address and an IPv6 address
 - added pod.status.podIPs in addition to old pod.status.podIP
- In the original alpha API, nodes and services were still single stack
 - Nodes might have an IPv6 IP, but Kubernetes wouldn't know about it.
 - Services could be defined as either IPv4-only (ipFamily: IPv4) or
 IPv6-only (ipFamily: IPv6) and would get one IP.

Dual Stack

- <u>SIG Network</u> decided we really needed to change Services to be fully dual-stack
 - ipFamilyPolicy to request SingleStack / PreferDualStack / RequireDualStack on service creation
 - ipFamilies to indicate the IP family or families to support
 - clusterIPs replacing/extending clusterIP
- Also improving the situation around node IPs, load balancers, etc

Dual Stack

- Since the old API was only alpha, the old single-valued ipFamily field was dropped entirely in favor of ipFamilies, rather than being deprecated.
- Thus the kube 1.20 dual-stack API is not compatible with the kube 1.19 dual-stack API.
- IPv4/IPv6 dual-stack networking is enabled by default for your Kubernetes cluster starting in 1.21, allowing the simultaneous assignment of both IPv4 and IPv6 addresses.

IPv4/IPv6 Dual Stack Support Configuration

- IPv6 single/dual stack is supported in OpenShift 4.8 (k8s 1.21) with OVN.
- Single Stack
 - Either an IPv4 or IPv6 address is assigned to the pod interface
- Dual Stack
 - Both IPv4 and IPv6 addresses assigned to the interface
- Simple install-time configuration
 - Modify "install-config.yaml" to specify IPv6 subnets in addition to IPv4.
- Post-install configuration:
 - Edit "network.config.openshift.io" config to add secondary
 "(machine|cluster|service)Network" values, and they will get rolled out correctly.
- Restrictions / Caveats / Notes
 - OVN only, no plans to support in openshift-sdn
 - Supported platform at GA: Bare Metal IPI (other platforms TBD)

IPv6 Enablement

Kubernetes Networking CIDR Ranges

• Machine CIDR

• IP address range for machines or cluster nodes

• Service CIDR

• IP address range for services

• Pod (Cluster) CIDR

• IP address range for pods

Host Prefix

• The host prefix determines the pod IP address pool for each machine. If the host prefix is set to /64, each machine is assigned a /64 subnet from the pod CIDR address range.

Enabling IPv6 Single Stack in OpenShift Clusters

- Initiate an OVN install, creating an install-config.yaml:
 - openshift-install create install-config
- In the install-config.yaml file:
 - For OVN, change the networkType to OVNKubernetes
 - For single-stack IPv6, set the following fields to IPv6 values in install-config.yaml:
 - clusterNetwork
 - serviceNetwork
 - machineNetwork

- networking:
 - networkType: OVNKubernetes
 machineCIDR: 2001:db8:0:1202::/64
 clusterNetwork:
 cidr: fd01::/48
 hostPrefix: 64
 serviceNetwork:
 - fd02::/112

- Continue with the cluster installation process:
 - openshift-install create cluster

Enabling IPv6 Dual Stack in OpenShift Clusters

- Initiate an OVN install, creating an install-config.yaml:
 - openshift-install create install-config
- In the install-config.yaml file:
 - For OVN, change the networkType to OVNKubernetes
 - For dual-stack, set appropriate dual-stack values for clusterNetwork, serviceNetwork, and machineNetwork. For example:
 - clusterNetwork:
 - cidr: 10.128.0.0/14
 - hostPrefix: 23
 - cidr: fd01::/48
 - hostPrefix: 64
- Generate the manifest files:
 - openshift-install create manifests

Deploying Services

```
"apiVersion": "v1",
"kind": "Service",
"metadata": {
    "labels": {
        "name": "test-service"
    },
    "name": "test-service"
},
"spec": {
    "ports": [
            "name
": "http",
            "port": 27017,
            "protocol": "TCP",
            "targetPort": 80
    ],
    "ipFamilyPolicy": "RequireDualStack",
    "selector": {
        "name": "test-pods"
```


Thank you

linkedin.com/company/red-hat

f facebook.com/redhatinc

youtube.com/user/RedHatVideos

y twitter.com∕RedHat

