
IPv6 Segment Routing 
integration with TCP

Mathieu Jadin, Fabien Duchêne
and Olivier Bonaventure

1



IPv6 Segment Routing (SRv6) is available
in the Linux kernel since version 4.10

4.10:
- SRH parsing, insertion and encapsulation
- Socket API

4.12:
- iproute2 modification

4.18:
- iptables modification
- Custom SRv6 network rules

2



The reference website is
https://segment-routing.org

3



Outline

- Linux implementation
- Motivation
- Path injections
- Flexible and application-agnostic path management
- Network events
- Evaluation

4



Using the whole network is hard

5



Using the whole network is hard

6



Tweaking IGP weights can change the paths

3

7



Tweaking IGP weights can change the paths

This solution lacks of flexibility!

- Hard to control the side effects
- Cannot split flows that goes to the same destination

8



IPv6 Segment Routing* brings more flexibility!

SDN controller
File server IP -> SRH

File server

* Lebrun, D., Jadin, M., Clad, F., Filsfils, C., & Bonaventure, O. (2018, March). Software resolved networks: Rethinking enterprise networks with 
ipv6 segment routing. In Proceedings of the Symposium on SDN Research (p. 6). ACM.

9



Still, there are some limitations

1. Granularity: we cannot consider flows in isolation for scalability

2. Reactivity: our first prototype does not change
the SRH once assigned

10



TCP is very reactive to congestion
through congestion control: Reno, Cubic, BBR,...

333 Mbps

333 Mbps

333 Mbps 333 Mbps

333 Mbps

333 Mbps

1 Gbps

11



They reduce queuing delay
but they cannot change to an non-congested path

333 Mbps

333 Mbps

333 Mbps 333 Mbps

333 Mbps

333 Mbps

1 Gbps

12



Can we better integrate TCP with SRv6?

SRv6 enables endhost apps to choose their paths:

1. Granularity: each app can set its own SRH in Linux

2. Reactivity: each app can rank SRHs with their CC state

13



Outline

- Linux implementation
- Motivation
- Path injections
- Flexible and application-agnostic path management
- Network events
- Evaluation

14



The controller can provide a list of SRHs

SDN controller

File server

SRH - 1Gbps, 5ms
No SRH  - 1Gbps, 4ms

15



The controller can choose any type of paths

Disjoint paths

Paths with similar latencies

Paths with a limit on the number of segments

Paths avoiding overloaded links

...

16



Outline

- Linux implementation
- Motivation
- Path injections
- Flexible and application-agnostic path management
- Network events
- Evaluation

17



How do we add a path management
on all endhosts?

Modify the kernel:
- Hard
- Takes time for merging and updating endhosts

Use a library:
- Cannot modify every application

=> We want to inject code in the kernel space from user space

18



eBPF to the rescue

19



Hooks in the kernel trigger the injected code
int tcp_connect(struct sock *sk) {

 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB,
              0, NULL);

 // Some processing

}

SEC("sockops")
int handle_sockop(struct bpf_sock_ops *skops) 
{

  
  
  rto = srtt + 4 * rttvar;

  return 0;

}

VM
// Processing
bpf_setsockopt(skops, SOL_IPV6,
     IPV6_RTHDR, srh, sizeof(*srh));

20



Most of the hooks already exist in the kernel

21



BPF maps enable communication
between injected code and user space daemon

VM srh = bpf_map_lookup_elem(srh_list, 
                          srh_id);

0     <2042:abcd:4:4::1, 2042:abcd:4:1::1, ::>
1     <::>
2     <2042:abcd:4:3::1, 2042:abcd:4:5::1, ::>

srh_list eBPF map

bpf_map_update_elem(srh_list_fd, 
srh_id, srh, BPF_ANY);

User space

Kernel space

Daemon

22



Example

23



Outline

- Linux implementation
- Motivation
- Path injections
- Flexible and application-agnostic path management
- Network events
- Evaluation

24



Various network events can trigger a change of path

Retransmission Timer Expiration

Fast Retransmit

Explicit Congestion Notification

Update of the congestion state from the controller

25



We need a way to stabilize the path changes

26



We need a way to stabilize the path changes

27



Outline

- Linux implementation
- Motivation
- Path injections
- Flexible and application-agnostic path management
- Network events
- Evaluation

28



Experimental setup

Mininet emulation

Linux kernel v5.3

Topologies from TopologyZoo

29



Example of topology

30

All links have a bandwidth of 100 Mbps
Clients are sending traffic at a rate of 75 Mbps



We can observe that one of the connections
changes its path and their bandwidths improve

31

SRv6+TCP

TCP only



For 50% of our topo subset
we have an improvement of 65%

32



In theory, we can improve 45% of topologies
of TopologyZoo set

33



Conclusion
Motivation

We can improve the network usage by mixing SRv6 and TCP
Path injections

SDN controllers can compute and inject paths to an endhost
Flexible and application-agnostic path management

eBPF enables us to inject path management in the kernel
Network events

We can react to various network events
Evaluation

Mixing SRv6 and TCP does improve the network usage

34



Backup slides

35



Discussion: eBPF code injection

We could dynamically inject the eBPF code to each endhost:

- From the controller
- From Router Advertisement or DHCP
- From the server

36



Future work: Study SRv6 with (MP)QUIC

It is simpler to integrate QUIC and SRv6:

- QUIC is user space and thus, easier to modify
- QUIC also have a multipath extension
- The server could push eBPF code directly to the client

through a separate stream

37



We use two maps: one for path list
and one for connection infos

struct bpf_elf_map SEC("maps") conn_map = {
    .type    = BPF_MAP_TYPE_HASH,
    .size_key    = sizeof(struct flow_tuple),
    .size_value    = sizeof(struct flow_infos),
    .pinning    = PIN_NONE,
    .max_elem    = MAX_FLOWS,
};

struct bpf_elf_map SEC("maps") dest_map = {
    .type    = BPF_MAP_TYPE_HASH,
    .size_key    = sizeof(struct in6_addr),
    .size_value    = sizeof(struct dst_infos),
    .pinning    = PIN_NONE,
    .max_elem    = MAX_FLOWS,
};

38


