

IPv6 Council – (Belgian) Content provider view

Tim Vereecke, Senior Solutions Engineer

IPv6 Trends

Peak: 5.8%

Belnet

Peak: 39.5%

Brussels

Peak: 49.7%

Proximus

Peak: 71.5%

Telenet

Peak: 73.8%

Voo

Peak: 81.5%

KBC

IPv6 Security

IPv6 Performance

Utkarsh Goel Montana State University utkarsh.goel@montana.edu moritz@akamai.com

Moritz Steiner Akamai Technologies, Inc.

Mike P. Wittie Montana State University mwittie@cs.montana.edu

Martin Flack Akamai Technologies, Inc. mflack@akamai.com

Stephen Ludin Akamai Technologies, Inc. sludin@akamai.com

ABSTRACT

The transition to IPv6 cellular networks creates uncertainty for content providers (CPs) and content delivery networks (CDNs) of whether and how to follow suit. Do CPs that update their CDN contracts to allow IPv6 hosting achieve better, or worse performance in mobile networks? Should CDNs continue to host mobile content over IPv4 networks, or persuade to their CP customers the performance benefits of IPv6 content delivery?

In this paper we answer these questions through a comprehensive comparison of IPv4 and IPv6 mobile Web performance in cellular networks in the US from the point of view of Akamai's content delivery infrastructure. Our data show that IPv6 hosting outperforms legacy IPv4 paths in mobile Web. Our analysis leads to clear recommendations for CPs to transition to IPv6-hosted mobile for cellular networks [51]. We argue that, unlike PlanetLab and Amazon EC2 datacenters [2, 15], Akamai's content delivery servers are so deeply deployed inside several cellular ISPs' networks that the end-to-end communication between mobile devices and Akamai's servers need not, strictly speaking, touch the wired public Internet outside the cellular network. As a result, Akamai's unique content delivery infrastructure enables us to view the end-to-end cellular ecosystem between mobile devices and cellular gateways and evaluate how content is delivered over cellular IPv6 networks from the perspective of content providers (CPs), ISPs, and other content delivery networks (CDNs) [6, 16].

CPs, such as Facebook and others, care about the experience of users with their respective applications. To deliver application content from datacenters to users in a timely manner, CPs make contractual agreements with CDNs to ensure content has high

Utkarsh Goel
Montana State University
utkarsh.goel@montana.edu

Moritz Steiner Akamai Technologies, Inc. moritz@akamai.com Mike P. Wittie
Montana State University
mwittie@cs.montana.edu

http://utkarshgoel.in/docs/Goel_IPv6.pdf

The transition to IPv6 cellular networks creates uncertainty for content providers (CPs) and content delivery networks (CDNs) of whether and how to follow suit. Do CPs that update their CDN contracts to allow IPv6 hosting achieve better, or worse performance in mobile networks? Should CDNs continue to host mobile content over IPv4 networks, or persuade to their CP customers the performance benefits of IPv6 content delivery?

In this paper we answer these questions through a comprehensive comparison of IPv4 and IPv6 mobile Web performance in cellular networks in the US from the point of view of Akamai's content delivery infrastructure. Our data show that IPv6 hosting outperforms legacy IPv4 paths in mobile Web. Our analysis leads to clear recommendations for CPs to transition to IPv6-hosted mobile

Amazon EC2 datacenters [2, 13], Akamai's content derivery servers are so deeply deployed inside several cellular ISPs' networks that the end-to-end communication between mobile devices and Akamai's servers need not, strictly speaking, touch the wired public Internet outside the cellular network. As a result, Akamai's unique content delivery infrastructure enables us to view the end-to-end cellular ecosystem between mobile devices and cellular gateways and evaluate how content is delivered over cellular IPv6 networks from the perspective of content providers (CPs), ISPs, and other content delivery networks (CDNs) [6, 16].

CPs, such as Facebook and others, care about the experience of users with their respective applications. To deliver application content from datacenters to users in a timely manner, CPs make contractual agreements with CDNs to ensure content has high

Utkarsh Goel Montana State University utkarsh.goel@montana.edu

Moritz Steiner Akamai Technologies, Inc. moritz@akamai.com Mike P. Wittie
Montana State University
mwittie@cs.montana.edu

Great

The transition to IPv6 cellular networks creates uncertainty for content providers (CPs) and content delivery networks (CDNs) of whether and how to follow suit. Do CPs that update their CDN contracts to allow IPv6 hosting achieve better, or worse performance in mobile networks? Should CDNs continue to host mobile content over IPv4 networks, or persuade to their CP customers the performance benefits of IPv6 content delivery?

In this paper we answer these questions through a comprehensive comparison of IPv4 and IPv6 mobile Web performance in cellular networks in the US from the point of view of Akamai's content delivery infrastructure. Our data show that IPv6 hosting outperforms legacy IPv4 paths in mobile Web. Our analysis leads to clear recommendations for CPs to transition to IPv6-hosted mobile

Amazon EC2 datacenters [2, 15], Akamar's content derivery servers are so deeply deployed inside several cellular ISPs' networks that the end-to-end communication between mobile devices and Akamai's servers need not, strictly speaking, touch the wired public Internet outside the cellular network. As a result, Akamai's unique content delivery infrastructure enables us to view the end-to-end cellular ecosystem between mobile devices and cellular gateways and evaluate how content is delivered over cellular IPv6 networks from the perspective of content providers (CPs), ISPs, and other content delivery networks (CDNs) [6, 16].

CPs, such as Facebook and others, care about the experience of users with their respective applications. To deliver application content from datacenters to users in a timely manner, CPs make contractual agreements with CDNs to ensure content has high

Utkarsh Goel Montana State University utkarsh.goel@montana.edu moritz@akamai.com

Moritz Steiner Akamai Technologies, Inc.

Mike P. Wittie Montana State University mwittie@cs.montana.edu

US data

The transition to IPv6 cellular networks creates uncertainty for content providers (CPs) and content delivery networks (CDNs) of whether and how to follow suit. Do CPs that update their CDN contracts to allow IPv6 hosting achieve better, or worse performance in mobile networks? Should CDNs continue to host mobile content over IPv4 networks, or persuade to their CP customers the performance benefits of IPv6 content delivery?

In this paper we answer these questions through a comprehensive comparison of IPv4 and IPv6 mobile Web performance in cellular networks in the US from the point of view of Akamai's content delivery infrastructure. Our data show that IPv6 hosting outperforms legacy IPv4 paths in mobile Web. Our analysis leads to clear recommendations for CPs to transition to IPv6-hosted mobile

Amazon ECZ datacenters [2, 15], Akamar's content denvery servers are so deeply deployed inside several cellular ISPs' networks that the end-to-end communication between mobile devices and Akamai's servers need not, strictly speaking, touch the wired public Internet outside the cellular network. As a result, Akamai's unique content delivery infrastructure enables us to view the end-to-end cellular ecosystem between mobile devices and cellular gateways and evaluate how content is delivered over cellular IPv6 networks from the perspective of content providers (CPs), ISPs, and other content delivery networks (CDNs) [6, 16].

CPs, such as Facebook and others, care about the experience of users with their respective applications. To deliver application content from datacenters to users in a timely manner, CPs make contractual agreements with CDNs to ensure content has high

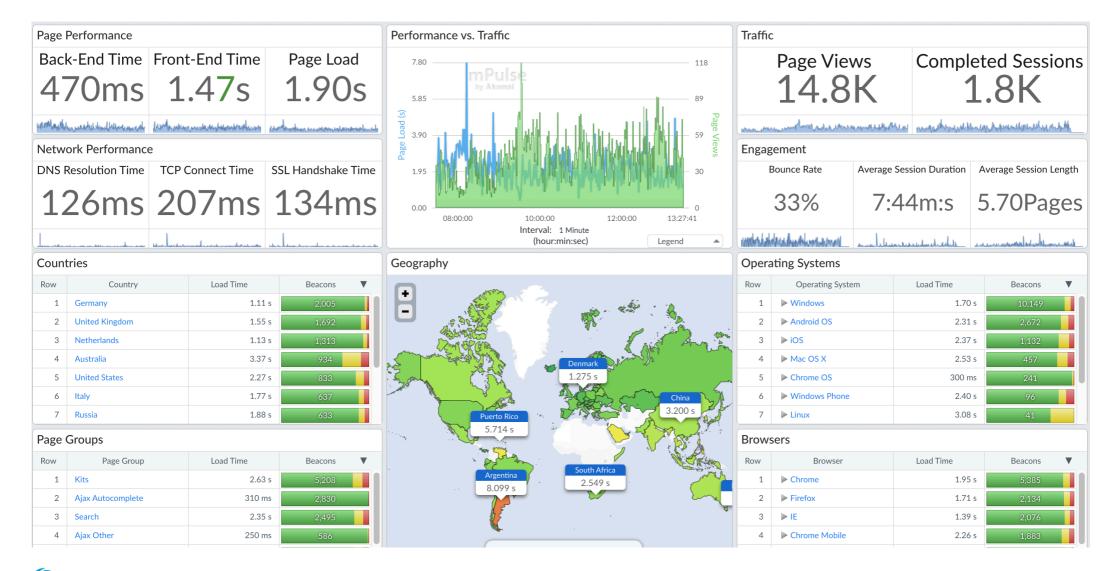
Belgian view

One site

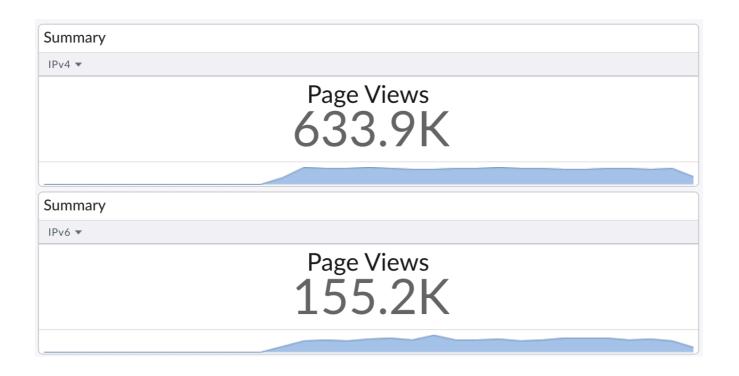
IPv6 and IPv4 enabled

Real users

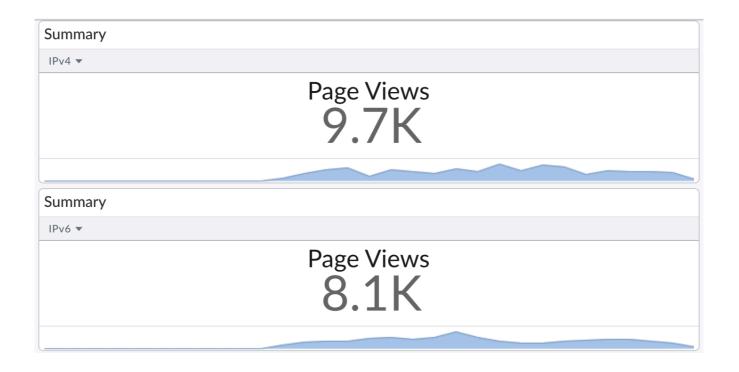
Short timeframe

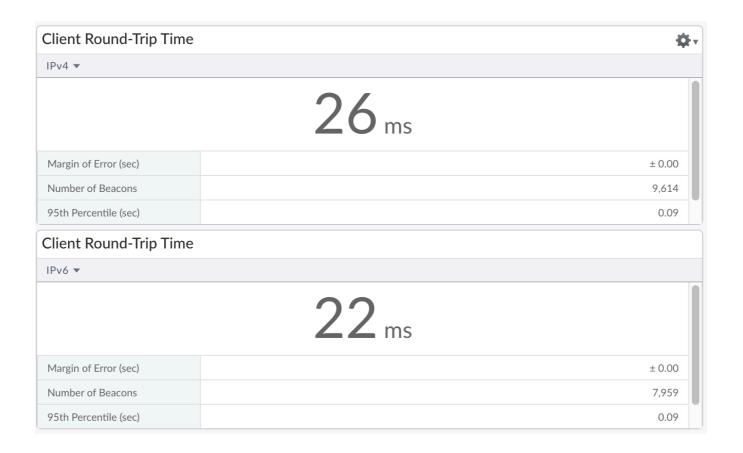


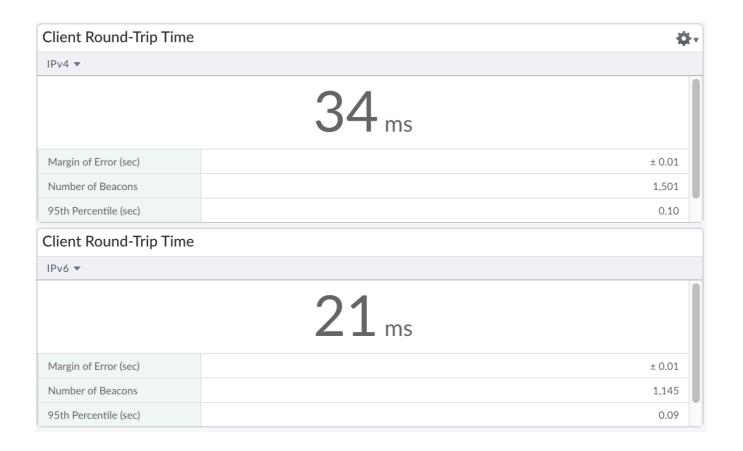
scalemates

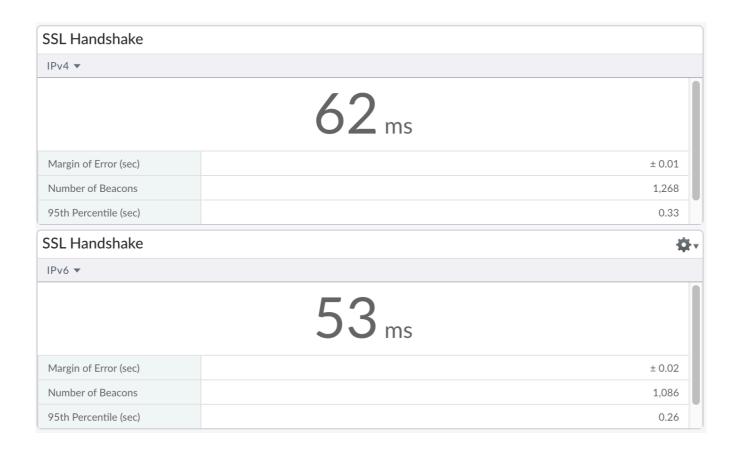


RUM









Back-End Time	
IPv4 ▼	
1:	16 ms
Margin of Error (sec)	± 0.03
Number of Beacons	9,627
95th Percentile (sec)	1.06
Back-End Time	
IPv6 ▼	
12	27 _{ms}
Margin of Error (sec)	± 0.02
Number of Beacons	7,963
95th Percentile (sec)	0.89

Back-End Time	
IPv4 ▼	
175	ms
Margin of Error (sec)	± 0.08
Number of Beacons	1,522
95th Percentile (sec)	1.23
Back-End Time	
IPv6 ▼	
132	ms
Margin of Error (sec)	± 0.03
Number of Beacons	1,089
95th Percentile (sec)	0.80

IPv6 Privacy

2018-05-25 00:11:04	GA	Mate 🔣	2a01:e34:edd9:b6c0:fd33:**** G:1897727379
2018-05-24 23:09:53	GA	Mate 📥	87.213.221.*** G:1375551100
2018-05-24 21:13:02	GA	Mate 🔣	2a02:a03f:4a97:7a00:d803:**** G:16093661
2018-05-24 21:12:34	GA	Mate 🔣	2a02:a03f:4a97:7a00:d803:**** G:1609366194
2018-05-24 18:52:12	GA	Mate 💳	84.35.203.*** G:1824217792
2018-05-24 18:51:21	GA	Mate 💳	84.35.203.*** G:1824217792
2018-05-24 18:06:16	GA	Mate 💳	2a02:f68:bbb:2::**** G:2037914472
2018-05-24 16:33:44	GA	Mate 💳	217.123.238.***

2018-05-25 00:11:04 GA Mate 2a01:e34:edd9:b6c0:fd33:****|G:1897727379
2018-05-24 23:09:53 GA Mate 87.213.221.***|G:1375551100

What should I mask in IPv6?

2018-05-24 18:51:21	GA	Mate	84.35.203.*** G:1824217792
2018-05-24 18:06:16	GA	Mate 💳	2a02:f68:bbb:2::**** G:2037914472
2018-05-24 16:33:44	GA	Mate 💳	217.123.238.***

Thank you!

Tim Vereecke, tvereeck@akamai.com